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1) A promising paradigm for 3) Machine learning to automatically
methane mitigation detect patterns in DNA

Inspect ML model for
biological insights

e Metabolic engineering: a field that aims to engineer
microorganisms into biological factories that convert
renewable feedstocks into valuable biomolecules.

Provides a more sustainable alternative to sourcing many
materials, especially petroleum-based products

e Much progress with model organisms (baker’s yeast and (

F R © broduce malaria medicine, jet fuel, fragrances e Most DNA sequence signals are still unknown in methanotrophs
e Deep learning approaches can learn relevant features directly
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methanotroph promoter sequences
e Biological insights: what DNA patterns has the model learned?
e Novel DNA: freeze model and use for forward DNA design

Dataset: variety of growth conditions Sample of ML model architectures
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e Every microbe has evolved a different genetic grammar: a
series of signaling sequences and logic patterns it uses to

4) Addressing key challenges: overfitting,
dataset size, imbalance

e Current models are overfitting to the training data, despite
initial strategies to address class imbalance and limited data
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e Future work: self-supervised pre-training on general sequence
G FP tasks; fine tune model to methanotroph RNA-seq data
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