Methane, Microbes, and Machine Learning:

Engineering biology to combat climate change
Erin H. Wilson, Mary E. Lidstrom, David A. C. Beck

ewilson6@cs.washington.edu

1) A promising paradigm for
methane mitigation

e Metabolic engineering: a field that aims to engineer
microorganisms into biological factories that convert
renewable feedstocks into valuable biomolecules.

-> Provides a more sustainable alternative to sourcing many
materials, especially petroleum-based products

e Much progress with model organisms (baker’s yeast and E.
coli) to produce malaria medicine, jet fuel, fragrances
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e Methanotrophs - bacteria that can
survive on methane as their sole
carbon source - are promising
microbial hosts for industrial
biomolecule production
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2) Regulatory DNA is a complex
language to decipher
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e Every microbe has evolved a different genetic grammar: a
series of signaling sequences and logic patterns it uses to
control its genes

-=> Promoter = sequence region containing many signals that
influence when genes turn ON or OFF (“expression’)

e \We must understand this grammar in order to efficiently
reprogram cells for biomolecule production

-> Research goal: develop methanotroph promoter tools

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

W

3) Machine learning to automatically
detect patterns in DNA

Inspect ML model for
biological insights

e Most DNA sequence signals are still unknown in methanotrophs
e Deep learning approaches can learn relevant features directly
from the data without explicit encoding
=> Use deep learning models to find patterns within
methanotroph promoter sequences

e Biological insights: what DNA patterns has the model learned?
e Novel DNA: freeze model and use for forward DNA design

Dataset: variety of growth conditions Sample of ML model architectures
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4) Addressing key challenges: overfitting,
dataset size, imbalance

e Current models are overfitting to the training data, despite
initial strategies to address class imbalance and limited data
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e Future work: self-supervised pre-training on general sequence
tasks; fine tune model to methanotroph RNA-seq data



