
Global Monitoring Laboratory, NOAA

Notable concern: CH4 is 85x more 
potent than CO2 (20 year timeframe)

● Methanotrophs - bacteria that can 
survive on methane as their sole 
carbon source - are promising 
microbial hosts for industrial 
biomolecule production 

★ Opportunity to divert methane 
waste streams into valuable 
everyday materials

Probing the limits of deep learning methods for 
predicting gene expression in non-model microbes

Erin H. Wilson, Mary E. Lidstrom, David A. C. Beck

Machine learning approaches can 
automatically detect patterns in DNA

A promising paradigm for mitigating 
methane emissions

● Metabolic engineering: a field that aims to engineer 
microorganisms into biological factories that convert 
renewable feedstocks into valuable biomolecules. 

Develop promoter tools that 
work within methanotroph 

genetic grammar

Models struggle to predict RNA-seq 
expression from promoter regions

Probing performance across varying 
levels of motif information density

ewilson6@cs.washington.edu

1)

2)

3)

4)

Krizhevsky et al 2017

Image Data

Gene A

Gene B

Gene C

signaling 
motifs

“Genetic grammar”

One-hot encode DNA 
“looks like” image data
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energy!

Filters learn 
influential 

motifs!

● Most regulatory signals are still unknown in M. buryatense
● Deep learning approaches can learn relevant features directly 

from the data without explicit encoding

Convolutional Neural Networks

Research goals: 
➔ Use deep learning models to decode M. buryatense 

genetic grammar by finding influential motifs within  
promoter regions

➔ Expand metabolic engineering tools for M. buryatense
➔ Maintain general approach: apply to other non-model 

organisms with limited data

Input data: upstream promoter regions
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Labels to predict: RNA-seq values

X examples
Promoter_region           

AGTACGTGTCCAGAT… 
GGCTGATGCTATACG… 
AGGGCAACGCGATCA… 
CCCGTGCAACTCACA… 
GTGTGTACCGCCGAA… 

   Gene    

Gene 1
Gene 2
Gene 3
Gene 4
Gene N

Y labels
NoCu   lowCu  highCu  …

221   34  53
 32   73   3
893   90   8
  6  359  78
209    8   7
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➔ Learning objective: predict gene expression outcomes from 
promoter DNA sequences

CNN LSTM

CNN + LSTM

➔ Model results: generally poor performance across many 
architectures and task formulations, despite strategies to mitigate 
class imbalance and limited data (😖 → 🤔 ) 3-class classification
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● If an expression response is controlled by a simple activation or 
repression event, how much information would be enough?

Dataset: N random DNA sequences of length L

Class labels: 
● 0 if GCGCGC present (minority)
● 1 if No Motif present (majority)
● 2 if TATATA present (minority)

→ Control minority class 
     imbalance at prevalence P

synthetic motif prediction experiment

X 
Random DNA           

AGTACGTGTCCAGAT… 
GGCACTATATACCTG… 
AGGGCAGCGAGCTCA… 
CCCGTGCAACTCACA… 
GTGCGCGCCGCCGAA… 

ID    

1
2
3
4
N

Class           

 1
 2
 1
 1
 0

Y 
One-hot 
encoded 

DNA

Objective: Train CNN to predict class

Motif Information Density = 

motif_len/L * P * N

Even for expression responses as 
simple as a pair of activating and 
repressing motifs, these types of 
models are unlikely to capture 

the signal in a dataset this small.

M. buryatense data insight:

Attempted many 
model arch. + 

hyperparameters

>> More data are needed >>


